Building an open-source IPv6 configuration architecture for OpenWrt

Steven Barth

Why OpenWrt?

SOHO router firmware quality greatly varies \rightarrow often outdated kernel & userland \rightarrow countless security issues

At the same time, requirements grow

- \rightarrow IPv6
- $\rightarrow AQM$
- \rightarrow 4G modem support

 \rightarrow ...

 \rightarrow Building an open reference platform

OpenWrt in a nutshell

 \rightarrow over 10 years of fun with embedded devices

 \rightarrow Linux with a custom build system & userland

 \rightarrow registered as project of Software in the Public Interest

 \rightarrow shipped on millions of devices worldwide

 \rightarrow loosely associated group of core developers + individual and company contributions

The Good ol' Days...

Protocol, IPv6.

Static Configuration

NAT hides dynamic changes

Straight-Forward Bootstrapping DHCP or IPCP (PPP) from ISP DHCP to clients Clients hostnames registered

... and the new era

Address prefixes using DHCPv6-PD Router addresses using RA or DHCPv6 (heuristics / trial & error?) RA for routes (but sometimes not)

Routes and address update intervals and lifetimes vary from several days to only a few seconds (!) Various IPv4 / IPv6 transitioning technologies (...)

 \rightarrow odhcp6c project

All roads lead to IPv6...

Protocol	6in4	6rd	Dual Stack	DS-Lite	LW4over6	MAP-E	MAP-T	464XLAT
Config	Static	DHCP	Native	DHCPv6	DHCPv6 or DHCP over DHCPv6	DHCPv6	DHCPv6	DNS
IPv4 NAT	IP NAT	IP NAT	IP NAT	no NAT	IP NAT	Port Range NAT	Port Range NAT 46	NAT 46

Did I mention GRE, AYIYA, 4rd, ...?

And transitioning between transitional mechanisms?

- \rightarrow requires a flexible network configuration daemon (netifd) and firewall (fw3)
- \rightarrow and a whole lot of pluggable and stackable protocol handlers

... and some lead to configured clients

	Router Adv.	DHCPv6		
Addresses	stateless (/64)	stateful		
Routes	default, on-link, <mark>more specific</mark>	_		
Prefixes	-	routers		
Dynamic Updates	yes	optional		
RDNSS / Domain	extension	extension		
Servers	many per link, all used	many per link, only 1 used		

RAs as least common denominator

Plus different flavors of DHCPv6 many platform quirks hostname registration (or not) prefix delegation (or not) work around lack of dynamic update capabilities

 \rightarrow odhcpd project (under refactoring)

Permit A BCP 38 & multi router networks

Source-Addresses & Multi-Homing

 \rightarrow Stateless IPv6 NAT?

 \rightarrow Source-address aware routing!

 \rightarrow synthetic source-dest-routes

Multi Router SOHO networks

- \rightarrow Vast layer 2 bridges?
 - \rightarrow What about link types?
- \rightarrow DHCPv6-PD + NAT44-cascade?

 \rightarrow What about topologies?

Beyond a single router...

We can build relatively universal more or less self-configuring IPv4 + IPv6 SOHO routers!

Can we take this one step further? Getting rid of WAN-port and LAN-bridge?

Can we scale this up to arbitrary networks? "Plug & Play" routers? But who "owns" the network(s)?

- \rightarrow Find a consensus among equal routers \rightarrow DNCP: a distributed consensus protocol
- \rightarrow Specify requirements for interoperability \rightarrow HNCP: autonomous networks using

... to an autonomous network!

Preparing for the future?

More routers and devices (IoT)?

Multipath TCP utilizing multi-homing?

Dealing with more heterogeneous link types (Ethernet, WiFi, Powerline, ...)?

Clients and applications actively selecting uplinks for certain services?

. . .

Thank you for your attention! Questions?

Steven Barth <cyrus@openwrt.org>