Bit Indexed Explicit Replication
BIER
Stateless Multi-point Replication
Background – IP Multicast History

- Steven Deering, 1985, Stanford University
- RFC988, 1986 (Obsoleted by RFC1112, 1989)
- Multicast is part of the IP protocol stack
- Intended as an Internet-wide end-to-end service
Background – IP Multicast Uses

- Any applications with multiple receivers
 - One-to-many or many-to-many
- Live video distribution
- Collaborative groupware
- Periodic data delivery—“push” technology
 - Stock quotes, sports scores, magazines, newspapers, adverts
- Reducing network/resource overhead
 - More than multiple point-to-point flows
- Distributed interactive simulation (DIS)
 - War games
 - Virtual reality
Background – IPMulticast Challenges

- Explicit Tree Building Protocol
 - Tree state per flow
 - RPF tree building can have multicast taking different paths than unicast
 - Convergence times negatively impacted by tree state
 - No way to aggregate state without sacrificing optimal delivery
 - Choose between state explosion or data flooding

- Data-driven events

- Specialized skill set to troubleshoot and maintain
Background – Today

- The benefits of multi-point services are well understood
- The challenges of the current solutions often result in a failed cost/benefit analysis
- Only those networks with an overwhelming business need have successful multicast deployments
- Much of the community have come to think of multicast as a failed technology
- Can we do better?
The BIER Epiphany

- Consider MY topology rather than a global topology
- Only encode the end-receivers in the packet header
 - Not the intermediate nodes
- Assign end-receivers a Bit Position from a Bit String
 - The smallest identifier possible
 - Advertise in the IGP
- Encode the Bit String in the packet header
 - Using some sort of encapsulation
- Create a Bit Forwarding Table on all BIER nodes to allow multicast packet forwarding using the Bit String in the packet
 - Derived from the RIB, SPF based
- We call it, Bit Indexed Explicit Replication (BIER)
IETF

- The BIER idea was presented in a BOF at the IETF in Hawaii.
 - November 2014.
- BIER WG 1st meeting at IETF 92, March 2015
- Vendors collaborating
 - Cisco
 - Ericsson
 - Alcatel-Lucent
 - Juniper
 - Huawei
- Received very good traction and support
IETF drafts

- draft-ietf-bier-problem-statement
- draft-ietf-bier-architecture
- draft-ietf-bier-encapsulation-mpls
- draft-ietf-bier-use-cases
- draft-ietf-bier-mvpn
- draft-ietf-bier-ospf-extensions
- draft-ietf-bier-isis-ranges
BIER Solution Overview
1. Assign a unique Bit Position from a BitString to each BFER in the BIER domain.
2. Each BFER floods their Bit Position to BFR-prefix mapping using the IGP (OSPF, ISIS)
1. Assign a unique Bit Position from a mask to each edge router in the BIER domain.
2. Each edge router floods their bit-position-to-ID mapping with a new LSA – OSPF or ISIS
3. All BFR’s use unicast RIB to calculate a best path for each BFR-prefix
4. Bit Positions are OR’d together to form a Bit Mask per BFR-nbr
5. Packets are forwarded and replicated hop-by-hop using the Bit Forwarding Table.
Bit Index Forwarding Table

- D, F and E advertise their Bit positions in the IGP (flooded).
- A, B and C know the mapping between the Bit and RID,
- Based on shortest path route to RID, the Bit Mask Forwarding Table is created.
Forwarding Packets

Overlay session

A

B

C

D

E

F

Table:

<table>
<thead>
<tr>
<th>BM</th>
<th>Nbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>0111</td>
<td>B</td>
</tr>
<tr>
<td>0011</td>
<td>C</td>
</tr>
<tr>
<td>0100</td>
<td>E</td>
</tr>
<tr>
<td>0001</td>
<td>D</td>
</tr>
<tr>
<td>0010</td>
<td>F</td>
</tr>
</tbody>
</table>

AND

0001

0011

0100

0001

0010
Forwarding Packets
Forwarding Packets

Overlay session
Forwarding Packets

- As you can see from the previous slides, the result from the bitwise AND (&) between the Bit Mask in the packet and the Forwarding table is copied in the packet for each neighbor.
- This is the key mechanism to prevent duplication.
- Look at the next slide to see what happens if the bits are not reset.
- If the previous bits would not have been reset, E would forward the packet to C and vice versa.
Forwarding Packets
How many Bits and Where?

- The number of multicast egress routers that can be addressed is depending on the number of Bits that can be included in the BitString.
- The BitString length is depending on the encapsulation type and router platform.
- We identified 5 different encoding options, most attractive below:
 1. MPLS, below the bottom label and before IP header.
 2. IPv6, extensions header.
MPLS encapsulation

- Multiple vendors have confirmed 256 bits is workable on today’s programmable platforms
- WG is using 256 bits as a starting point
BIER Header

```
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9 0 1
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|0 0 0 0|  Proto  |  Len   |    Entropy     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
| BitString  (first 32 bits) ~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
~    BitString  (last 32 bits)
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
|  Reserved  |    BFIR-id     |
+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
```

- Documented in draft-ietf-bier-mpls-encapsulation
MVPN over BIER
MVPN over BIER

- BIER replaces PIM, mLDP, RSVP-TE or IR in the core
- BIER represents a full mesh (P2MP) connectivity between all the PE’s in the network
- There is no need to explicitly signal any MDT’s (or PMSI’s)
- Current MVPN solutions have many profiles
 - This is partly due to the tradeoff between ‘State’ and ‘Flooding’
 - Different C-multicast signaling options
- MVPN over BIER, there is one profile
 - BGP for C-multicast signaling
- No need for Data-MDTs
MVPN over BIER

- The BGP control plane defined for MVPN can be re-used.
- PIM (S,G)/(*,G) can be translated into BGP updates.
- Requirement, we depend on Leaf AD routes for explicit tracking!
- Big difference, there is no Tree per VPN…!!!
- The BIER packets needs to carry Source ID and upstream VPN context label
Sets and Areas
BIER Sets

- To increase the scale we group the egress routers in Sets
- Each Bit Position is unique in the context of a given Set
- The packet carries the Set ID

<table>
<thead>
<tr>
<th>Set</th>
<th>BM</th>
<th>Nbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0111</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>0111</td>
<td>I</td>
</tr>
</tbody>
</table>

Note, Bit Positions 1, 2, 3 appear in both Sets, yet do not overlap due to different Set assignments.

Note, we create different forwarding entries for each Set.

RIPE
BIER Sets

- There is no topological restriction which set an egress belongs to
- But it may be more efficient if it follows the topology

<table>
<thead>
<tr>
<th>Set</th>
<th>BM</th>
<th>Nbr</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0111</td>
<td>I</td>
</tr>
<tr>
<td>2</td>
<td>0111</td>
<td>I</td>
</tr>
</tbody>
</table>

Note, we create different forwarding entries for each Set.
BIER Sets

- If a multicast flow has multiple receivers in different Sets, the packet needs to be replicated multiple times by the ingress router, once for each set.

- Is that a problem? We don’t think so…

- The Set identifier is part of the packet.

- Can be implemented as MPLS label.
BIER Area

- A bit Mask only needs to be unique in its own area.
- ABR’s translate Bit Masks between area’s.
- Requires a IP lookup and state on the ABRs.
- This is very similar for ‘Segmented Inter-AS MVPN’.
Conclusion
Advantages

- Packets forwarded via BIER follow the unicast path towards the receiver, inheriting unicast features like FRR and LFA.
- There is no per multicast flow state in the network.
- Multicast convergence is as fast as unicast, there is no multicast state to re-converge, signal, etc.
- Nice plugin for SDN, its only the ingress and egress that need to exchange Sender and Receiver information.
- The core network provides a many-2-many connectivity between all BIER routers by default following the IGP.
- No Multicast control protocol in the network.
Disadvantages

- The Bit String length has an upper bound and may not cover all deployment scenarios.
- Using sets to increase the number of egress routers may require the ingress to replicate the packet multiple times.
- Using area's requires the ABR to have state.
- Existing low-end platforms are less flexible to adopt BIER.
- ASIC/Merchant spin required for low-end platforms
Questions?
BIER
BIT INDEXED EXPLICIT REPLICATION

bier@ietf.org http://trac.tools.ietf.org/bof/trac/

IETF Nov 2015 Honolulu Hawaii