

The Role of Analytics in Routing, Network Performance and SDN

Cengiz Alaettinoglu

It all started with a jitter study (2000)

- Studied jitter on 3 US and 1 European backbones for several weeks
- □ For 99.99% packets, measured jitter < 1ms</p>

However, 0.01% of Jitter was severe

Theory: Packets being spewed out from an unwinding routing loop...

- Did we really have long routing loops in the network?
- □ Did ISIS really take 10+ seconds to converge?
- So, we analyzed routing along with jitter

ISIS in a Nutshell

- Each router sends Link State Packets (LSP) that describes its local topology
 - List of links to neighbors (adjacencies), prefixes along with metrics
 - This is refreshes periodically, otherwise LSP content is purged
- This is flooded across the network
 - Each router send new LSPs it receives to its neighbors
 - Neighbors sends to their neighbors, ...
- Each router accumulates LSPs into a database (LSDB) and constructs the current view of the topology
- Shortest paths are computed using Dijkstra's SPF algorithm

Excessive ISIS churn caused excessive LSP Propagation Delay

10

20

30

40

50

60

All link state packets (LSPs) including refreshes

LSPs that report a change

LSP propagation delay

 Seconds between seeing the same LSP in the east and the west coasts of the US

Explanation

- Link state databases were not in sync:
 - Very large LSP databases
 - High churn rate caused many LSPs to flood
 - LSP rate-control slowed down flooding
 - Any topology change could result in a loop under these conditions
- We realized being able to look at routing was key for powerful network performance analysis
- Today, we see very high churn in very large TE databases using auto-bandwidth with large number of tunnels

Route Analytics Today

- Troubleshooting and visualization
- Service/application monitoring and alerting
- Network health assessment
- Topology-aware traffic analysis
- Proactive change modeling
- Analytics-driven Software Defined Networking applications

Use Case: Diagnosing Black Holing

- A peering router to a major service provider crashed
 - Hot swappable card was not quite so...
- ☐ Traffic to the SP was black-holed network-wide
 - Traffic exiting all 6 locations was black-holed
- □ About 3 minutes of routing outage
 - 3 minutes was too short to diagnose the issue at human speed
 - Had a 45 minute impact on the services and ad revenues
 - Users who could not use the service did something else

Expected Exit-Points Before Incident

Copyright © 2015 Packet Design

Recursive Route Resolution

- BGP determines exits
 - NextHop attribute
- Usually IGP distance determines the closest

- More accurately, we recursively find a path to NextHop
 - IGP, static, BGP, or a series...

The Incident

ISIS activity during incident

Time ▼	Router	Operation	Operand	Attributes
2004-10-28 07:36:11.974206	core-ord-01	Drop Neighbor	edge-ord-02	Metric: Down (TE)
2004-10-28 07:36:12.374093	core-ord-02	Drop Neighbor	edge-ord-02	Metric: Down (TE)
2004-10-28 07:38:09.063564	core-ord-01	Add Neighbor	edge-ord-02	Metric: 503 (TE)
2004-10-28 07:38:36.071999	core-ord-02	Add Neighbor	edge-ord-02	Metric: 503 (TE)

Exit-Points During Incident

A Path Before and After the Incident

BGP Next hop resolution: before 128.9.129.1/32 in ISIS vs. after 128.9.128.0/19 in BGP

Path	Source Node	Destination Node	Protocol	Resolved by Prefix
F-edge-dfw-03→ 199.221.80.0/24				
i÷-Hop 1	edge-dfw-03	core-dfw-01	BGP	199.221.80.0/24
Hop 2	core-dfw-01	core-aus-01	BGP	199.221.80.0/24
⊢-Hop 3	core-aus-01	edge-aus-01	BCD	199.221.90.0/24
Lookup 1			ISIS	128.9.129.1/32

Route Recursion

Path	Source Node	Destination Node	Protocol	Resolved by Prefix
F-edge-dfw-03→ 199.221.80.0/24				
+ Hop 1	edge-dfw-03	core-dfw-01	BGP	199.221.80.0/24
+-Hop 2	core-dfw-01	core-aus-01	BGP	199.221.80.0/24
⊢-Self Hop	core-aus-01	core-aus-01	BGP	199.221.90.0/24
Lookup 1			BGP	128.9.128.0/19

Cause of Black Holing

- Every SP announces its address space externally in BGP
 - 128.9.128.0/19 BGP route is for this purpose
 - But it also resolves the NextHop address 128.9.129.1/32
- When the peering router crashed
 - IGP routes from that router were withdrawn in milliseconds
 - BGP routes from that router were not withdrawn
 - 3 KEEPALIVEs of 60 seconds each router rebooted before this
 - These BGP routes were now resolved by 128.9.128.0/19 in BGP
 - Injected by 6 core routers
 - Distance to a core router from any router is very low
 - Every router uses the dead router's BGP routes
- We are good at designing networks when everything is up and running, but failure cases are often beyond our imagination

Remedy

- Insert a really expensive static route for the /19 to ISIS
 - It should cost more than longest possible path in IGP
 - ISIS routes preferred over BGP routes and will hide the /19 BGP route in recursion
 - Now, when a peering router crashes, the traffic will choose a true exit
 - See: http://www.nanog.org/meetings/nanog34/presentations/gill.pdf
- Do not: Make IBGP session converge faster (like running BFD)
 - One may argue the root cause is that BGP was too slow to withdraw
 - You will lose the IBGP session each time the IGP path of the session changes

Challenges in Operating SDN

SDN makes networks programmable for

- Network overlays
- Bandwidth reservation
- Demand placement
- Service deployment
- Etc.

-- but --

What governs whether or not these programmatic changes should be made? What will be their impact?

Need for Analytics-Driven Applications

- When major apps/services are introduced, planning groups validate capacity
 - Quality of Experience expectations
 - Capacity planning
 - Changes to the topology, CoS treatment, ...
- If the apps/services are being rolled out without operator intervention, how do you plan for them?
 - SDN analytics addresses this concern

How Rich Analytics Help a Bandwidth Scheduling Application

- $exttt{ iny Bandwidth scheduling: can I move \mathcal{X} bps from A to B at time <math>t$?
- Attractiveness: SPs have abundance of spare bandwidth
 - Most SP networks have less than 50% utilization
 - Verizon: 46% average peak utilization
 - Level 3: 46-56% peak utilization range
- Can an SP profit from this spare capacity?
- But there are good reasons for this spare bandwidth

A Naïve Implementation

- Let's collect link utilizations
 - This is near real time; and SPs already have it
- $lue{}$ We need utilizations at time t
 - Use historical link utilizations
 - Baseline: average same 5-minute or hour of the day for several weeks
 - Add projections for growth and safety
- $lue{}$ Compute path from A to B and add ${\mathcal X}$ bps to the links
 - Go or no-go decision based on new link utilizations
- $\ \square$ If go, schedule the SDN controller to set up this path from A to B at time t, and tear it down afterwards

Reasons for Spare Bandwidth

- \square Increased utilization \Rightarrow increased delay and jitter
 - Delay vs. link utilization curve has a sharp knee
- Network must accommodate failures
 - Network must have capacity to reroute the traffic around failures
 - Large networks have one link down at any given time, they must tolerate two link failures
- Traffic is growing but adding capacity takes time

Addressing These Challenges

- Increased delay
 - Cap the go/no-go decision at ~65-70%
 - For anything above that we must be moving bulk traffic
 - Not suitable for uncompressed HD broadcast of an event
 - Not even suitable for best-effort traffic
 - Must deploy differentiated services
- Protect against failures via analytics driven simulation
 - Fail every (or two) link/router and see the impact on link utilizations
 - Not sufficient to fail just the links/routers along the path

Failure Impact: Where will the traffic go?

- We need to know where the traffic is entering the network, how much traffic there is, and where it is exiting the network
 - Link utilizations don't tell where the traffic is entering or exiting the network
- We need to understand the network's routing to compute the new paths

Need for a Traffic Demand Matrix

- Traffic Matrix:
 - For each router pair (r1,r2), how much traffic entering at r1 is exiting at r2?
- Flow data coupled with routing gives us traffic matrix

Simulation and Impact of a Failure

- □ For each flow on the failed link
 - Go to the ingress router and find the new path for the flow
 - Subtract flow's bandwidth from the old links
 - Add flow's bandwidth to the new links
 - Check to see if congestion crept in
- We need an accurate routing model of the network
 - Route analytics provides this for IGP, BGP, RSVP-TE, VPNs...

Concluding Remarks

- Routing impacts network performance
 - Availability and reachability
 - Sub-optimal paths with longer delays, jitter
- Route analytics proves to be very effective in
 - Troubleshooting, monitoring, alerting
 - Reporting and network health assessment
 - Routing-aware traffic analysis
 - BGP peering analysis
 - Traffic matrices
- Rich analytics are key for successful SDN deployment and applications, including bandwidth scheduling