Tyre Kicking the DNS

Testing Transport Comsiderations of Rolling
Roots

Five Years Ago

ICANN's First DNSSEC Key Ceremony for the Root Zone

arsitechnica 7 @ unigckhizwon infvy oo+

4

MAIN MENU MY STORIES: FORUMS J0BS ARS CONSORTIUM

RISK ASSESSMENT - SECURITY & HACKTIVISM important milestone on June 16, 2010 as ICANN hosts the first production DNSSEC key ceremony in a

The global deployment of Domain Name System Security Extensions (DNSSEC) will achieve an

. . . high security data centre in Culpeper, VA, outside of Washington, DC.
DNS root zone finally signed, but security
battle not over

The root of the DNS hierarchy is now protected with a cryptographic signature ...

by ljitsch van Beijnum - Jul 16, 2010 11:28pm CEST

(3 Shore | W Tweet | 13

Yesterday, the DNS root zone was signed. This is an important step in the deployment of DNSSEC, the
mechanism that will finally secure the DNS against manipulation by malicious third parties.

Schneier on Security R J j A
Blog Newsletter Books Essays News Schedule Crypto AboutMe | 1|

« Pork-Filled Counter-Islamic Bomb Device

¥

Security Vulnerabilities of Smart Electricity Meters

=

DNSSEC Root Key Split Among Seven People

The DNSSEC root key has been divided among seven people:

, VA - location of first DNSSEC key signing ceremony

Part of ICANN's security scheme is the Domain Name System Security, a security
protocol that ensures Web sites are registered and "signed" (this is the security
measure built into the Web that ensures when you go to a URL you arrive at a real site
and not an identical pirate site). Most major servers are a part of DNSSEC, as it's
known, and during a major international attack, the system might sever connections
between important servers to contain the damage.

The US KSK Repository

The Amster

o D@

3
>
L

N

George Michaelson

Five Years Ago..

Root DNSSEC Design Team F. Ljunggren
Kirei

T. Okubo

VeriSign

R. Lamb

ICANN

J. Schlyter

Kirei

May 21, 2010

DNSSEC Practice Statement for the Root Zone KSK Operator
Abstract

This document is the DNSSEC Practice Statement (DPS) for the Root
Zone Key Signing Key (KSK) Operator. It states the practices and
provisions that are used to provide Root Zone Key Signing and Key
Distribution services. These include, but are not limited to:
issuing, managing, changing and distributing DNS keys in accordance
with the specific requirements of the U.S. Department of Commerce.

47Z,

Root Zone KSK Operator DPS May 2010

6.3. Signature format
The cryptographic hash function used in conjunction with the signing
algorithm is required to be sufficiently resistant to preimage
attacks during the time in which the signature is valid.

The RZ KSK signatures will be generated by encrypting SHA-256 hashes
using RSA [RFC5702].

6.4. Zone signing key roll-over
ZSK rollover is carried out quarterly automatically by the Root Zone
ZSK Operator's system as described in the Root Zone ZSK Operator's
DPS.

6.5. Key signing key roll-over
Each RZ KSK will be scheduled to be rolled over through a key)
ceremony as required, or after 5 years of operation.

RZ KSK roll-over is scheduled to facilitate automatic updates of
resolvers' Trust Anchors as described in RFC 5011 [RFC5011].

After a RZ KSK has been removed from the key set, it will be retained
after its operational period until the next scheduled key ceremony,
when the private component will be destroyed in accordance with
section 5.2.10.

Five Years Ago..

Root DNSSEC Design Team F. Ljunggren

DN

Abstract

This dd
Zone Ke
provisi
Distrik
issuing
with th

Kirei

T. Okubo
VeriSign

R. Lamb
ICANN

J. Schlyter
Kirei

May 21, 2010

tor

he Root
ces and
and Key
to:
ccordance
ommerce.

May 2010

the signing

eimage

A-256 hashes

ZSK rollover is carried out quarterly automatically by the Root Zone
ZSK Operator's system as described in the Root Zone ZSK Operator's
DPS.

6.5.

Key signing key roll-over

Each RZ KSK will be scheduled to be rolled over through a key
ceremony as required, or after 5 years of operation.

RZ KSK roll-over is scheduled to facilitate automatic updates of

resolvers'

Trust Anchors as described in RFC 5011 [RFC5011].

After a RZ KSK has been removed from the key set, it will be retained
after its operational period until the next scheduled key ceremony,
when the private component will be destroyed in accordance with
section 5.2.10.

Easy, Right?

Publish a new KSK and include it in DNSKEY
responses

Use the new KSK to sign the ZSK (as well as the
old KSK signature)

Withdraw the old signature signed via the old
KSK

Revoke the old KSK

Easy, Right?

Publish a new KSK and include “t in DNSKEY
responses

1
Use the ne 1‘&, ® s well asthe
ol 50
‘B‘Eo i signature signed via the old
|

Revoke the old KSK

Basy, Right?

DNS Root KSK Rollover 2015

Rickroll analyze

k 2015Q1 -

+ 2015Q2 + 2015Q3 + 2015Q4 |
T+0 T+0 T+20 T+30 T+40 T+50 T+60 T+70 T+80 T+0 T+0 T+20 T+30 T+40 T+50 T+60 T+70 T+80 T+0 T+0 T+20 T+30 T+40 T+50 T+60 T+70 T+80 T+0 T+0 T+20 T+30 T+40 T+50 T+60 T+70 T+80
ot soz so13 st S5 S8 Soa7 se st ot sz soi3 st S5 o6 S7 soe sots ot sz soi3 st S5 o6 So7 soe st ot oz sat3. ot S5 o6 So7 soe st

Zsk-1aqe 2K 10t

ZSK1SA! sk-1sq1 ZSk-isq1 ZSK-15q1 ZSK-15q1 ZSK-1sql ZSK-1sql ZSK-1sql ZSK-isqi ZSk-isqt ZoR-iSal

2Z8K-15q2 28K-15q2
"0? ZSK-15q2 ZSK-15q2 ZSK-15q2 ZSK-15q2 ZSK-15q2 2ZSK-15q2 2SK-15q2 2ZSK-15q2 ZSK-15q2 s

2ZSK-153 2 2 g g T X 5 X % Z5K-153

eoone ZSK-153 ZSK-1503 ZSK-1503 ZSK-1503 ZSK-1503 ZSK-15q3 ZSK-1503 ZSK-1503 ZSK-15q3 Z0CEND

ff‘;‘bﬁ‘ Z5K-1504 ZSK-15g4 ZSK-15q4 ZSK-15q4 ZSK-15g4 ZSK-15q4 ZSK-15q4 ZSK-15q4 ZSK-15qa ZSN-15at

post-publish

ZSK-16q1
oy ZSK16a1

)

T+10 T+20

Slot 2 Slot 3

ZSK-1502 ZSK-15g2 ZSK-1502 ZSK-1502 ZSK-1502 ZSK-1502 ZSK-15g2 ZSK-15g2

T+30

Slot 4

2015 Q2

T+40

Slot 5

Basy, Right?

2015Q3

T+50

Slot 6

T+60

Slot 7

T+70 T+80

Slot 8 Slot9

ZSK-15qg3
pre-publish

T+0

Slot 1

T+10

Slot 2

ZSK-1503 ZSK-15q3 ZSK-1503

T+20 T+30

Slot 3 Slot 4

T+40

Slot 5

T+50

Slot 6

T+60

Slot7

T+80 T

Slot9 Slc

ZSK-15q3 ZSK-1503 ZSK-1593 ZSK-15q3 ZSK-15q3 ZSK-15¢3 .

ZSK-1 5g4 ZSK-
pre-publish

1024 bit ZSK L~ ™~
1011 1158 1011 [1297 736 883
1139 1414 1139 N\ 1425 864 1139
2048 bit Z5K ./ IN/ DNSKEY response size ™=

We've (sort of) done it
before

Roll Over and Die?

February 2010

George Michaelson
Patrik Wallstrom
Roy Arends

Geoff Huston

In this month's column I have the pleasure of being joined by
George Michaelson, Patrik Wallstrom and Roy Arends to present
some critical results following recent investigations on the
behaviour of DNS resolvers with DNSSEC. It's a little longer than
usual, but I trust that its well worth the read.

-- Geoff

It is considered good security practice to treat cryptographic keys with a healthy level of respect.
The conventional wisdom appears to be that the more material you sign with a given private key
the more clues you are leaving behind that could enable some form of effective key guessing. As
RFC4641 states: "the longer 2 key is in use, the greater the probability that it will have been
compromised through carelessness, accident, espionage, or cryptanalysis." Even though the risk is
considered slight if you have chosen to use a decent key length, RFC 4641 recommends, as good
operational practice, that you should "roll" your key at regular intervals. Evidently it's a popular
view that fresh keys are better keys!

The standard practice for a "staged™ key rollover is to generate a new key pair, and then have the
two public keys co-exist at the publication point for a period of time, allowing relying parties, or
clients, some period of time to pick up the new public key part. Where possible during this period,
signing is performed twice, once with each key, so that the validation test can be performed using
either key. After an appropriate interval of parallel operation the old key pair can be deprecated
and the new key can be used for signing.

This practice of staged rollover as part of key management is used in X.509 certificates, and is
also used in signing the DNS, using DNSSEC. A zone operator who wants to roll the DNSSEC key
value would provide notice of a pending key change, publish the public key part of a new key pair,
and then use the new and old private keys in parallel for a period. On the face of it, this process
sounds quite straightforward.

< What could possibly go wrong? >

But that was then..

And this is now:

— Resolvers are now not so aggressive in searching for
alternate validation paths when validation fails

(as long as resolvers keep their code up to date, which everyone
does — right?)

— And now we all support RFC5011 key roll processes
— And everyone can cope with large DNS responses
So all this will go without a hitch

Nobody will even notice the KSK roll at the root
Truly ruly!

But that was then..

And this is now:

— Resolvers are now not so aggressive in searching for
alternate validation n=t-- \en validation fails

(aslong - \ up to date, which everyone

does —rig

— And now v

¢ V11 key roll processes
— And everyc e bupe W|th large DNS responses

So all this will go without a hitch

Nobody will even notice the KSK roll at the root
Truly ruly!

What we all should be
concerned about..

That resolvers who validate DNS responses will
fail to pick up the new DNS root key
automatically

— i.e. they do not have code that follows RFC5011
procedures for the introduction of a new KSK

The resolvers will be unable to receive the larger

DNS responses that will occur during the dual
signature phase of the rollover

What can be tested ..

That resolvars whé\ywalidateADNS regbonses will
fail to pj p th€ npw DNg root kéy
autonpaticylly

l.e. thagy glo not HaveLode that/folloivs RFC5011
procefigres for the /ntroduaripn of & p€w KSK

Will resolvers be able to receive the larger DNS
responses that will occur during the dual
signature phase of the rollover

S50 we've been testing

 We are interested in sending DNSSEC-aware
DNS resolvers a response that is much the
same size as that being contemplated in a KSK
key roll

* And seeing whether they got the response

some Interesting Sizes

8 octets

20 octets
40 octets
40 octets
512 octets
560 octets
576 octets
913 octets
1,232 octets
1,280 octets
1,425 octets
1,452 octets
1,472 octets
1,500 octets

UDP pseudo header size

IPv4 packet header

maximum size of IPv4 options in an IPv4 IP packet header

IPv6 packet header

the maximum DNS payload size that must be supported by DNS

the maximum IPv4 packet size that must be supported by IPv4 DNS UDP systems
the largest IP packet size (including headers) that must be supported by IPv4 systems
the size of the current root priming response with DNSSEC signature

the largest DNS payload size of an unfragmentable IPv6 DNS UDP packet

the smallest unfragmented IPv6 packet that must be supported by all IPv6 systems
the largest size of a ./IN/DNSKEY response with a 2048 bit ZSK

the largest DNS payload size of an unfragmented Ethernet IPv6 DNS UDP packet
the largest DNS payload size of an unfragmented Ethernet IPv4 DNS UDP packet
the largest IP packet supported on IEEE 802.3 Ethernet networks

EDNS(O) UDP Buffer sizes

I I I

90 |- i
80 | -
70 | -
60 - .

&

3

=

o 50 -

G

o

S

o

Z 40 b i

<

=

£

=]

O 30} i
20 - .
10 | r i

0 | | | | | | | | | | | | | | |

512 1024 1536 2048 2560 3072 3584 4096 4608 5120 5632 6144 6656 7168 7680 8192

Resolver-Offered EDNSO Buffer Size

EDNS(O) UDP Buffer sizes

Cumulative % of Queries

3 | | | | | | |
1408 1424 1440 1456 1472 1488 1504 1520

Resolver-Offered EDNSO Buffer Size

EDNS(O) UDP Buffer sizes

9

85

8

g 75
-
[}
=
&
G
o

= 7
o
=
g
=
£
=
@)

Around twe 1125 ocded response size we will see

UDP response druncation rates of arouna D5+

6

55

1408

1424

1440

1456 1472

Resolver-Offered EDNSO Buffer Size

1488

1504

1520

The Test Method

We are using a mechanism to measure the Internet
from the “edge”:

— We use an ad with an active script element

— When a browser receives an impression of the ad the
script is activated

— The script fetches a small number (5) of 1x1 blots, and
then fetches a final blot to tell us which ones it actually
received

— As long as every DNS name in the URLs of these blots is
unique, then DNS and Web proxies can’t interfere!

— Our servers see the DNS queries and the Web fetches

— We can infer client-side behaviours based on these
observations
* Acknowledgement and thanks to Google for supporting this work

The Test

e We are interested in resolvers who are
DNSSEC aware (queries that contain the
EDNSO option with DNSSEC OK flag set on)

 We would like to test larger responses:
— 1,440 octets of DNS payload

 We would like to test a couple of crypto
protocols

— RSA
— ECDSA

Testing

e We are interested in those resolvers that are
retrieving DNSSEC signature data, so we are

looking for queries that include EDNSO and
DNSSEC OK flag set

* How many resolver queries have DNSSEC OK
set?

EDNS(O) DNSSEC OK Set

76,456,053 queries
63,352,607 queries with EDNS(0) and DNSSEC OK set
= 83% of queries

777,371 resolvers
649,304 resolvers with EDNS(0) and DNSSEC OK set
= 84% of resolvers

Large Responses

How well are 1,440 octet DNS responses
handled when compared to much smaller
responses?

1,440 octet RSA-signed
Responses

9,113,215 tests
7,769,221 retrieved the 1x1 blot (85%)
2,644,351 queried for the DS record
849,340 queried for the DS record (but no blot fetch)
494,581 timed out (but no blot fetch)
72 appeared to fail the DNS

1,440 octet RSA-signed
Responses

9,113,215 tests

7,769,221 retrieved the 1x1 blot 0 comilcy
\\ X0

2,644,351 auerient = o o0 o0 0 Scons

5 s 3 € s record (but no blot)

494,581 timed out (but no blot)

72 appeared to fail the DNS

WO

1,440 octet RSA-signed
Responses

9,113,215 tests Osec®

7,769,221 retrieved the 1x1 LQ.E -

2 644 351 querlf‘s eQ..?O:O QQ;L(O: \oC Q*Q
N \)(Q \ O\Q [0\

kAT | \o\)a\ c oﬁf’(e <N _urd (but no blot)

'(\‘\‘% \\)
4. oW“\ o\,\ v”“ @ .. \out no blot)

Q(‘
o\W'L appeared to fail the DNS

omall vs Large

What happens when the response size grows
above 1,472 octets?

1,440 Octets Payload

Experiments: 6,542,993
Web Fetch: 5,880,921

DS Fetch: 181,610
Timeout: 480,415
DNS Fail: 47

1,770 Octets Payload

Experiments: 6,566,645
Web Fetch: 5,992,617
DS Fetch: 167,119
Timeout: 401,831
DNS Fail: 5,078

ECDSA vs RSA

The spec says that when a resolver encounters a
zone signed only with algorithms that are not
supported by the resolver then it will treat the zone
as unsigned and not proceed with validation

Most resolvers determine the zone’s signing
algorithms from the DS record

What happens when we compare a 1,440 octet
response signed by RSA and a 1,440 octet response
sighed by ECDSA?

1,440 octet ECDSA-signed
Responses

9,137,436 tests
7,766,572 retrieved the 1x1 blot
2,644,564 queried for the DS record
860,163 queried for the DS record (but no blot)
505,045 timed out (but no blot!)
5,656 appeared to fail the DNS

1,440 octet ECDSA-signed
Responses
9,137,436 tests o\ e

Ky o0 WA
'("\‘% \Q(o O(X Q(O\D\c o\

\ d
5\5«;@“_ X0 “*‘*:"on Q?.\\out no blot!)
o U

RN appeared to fail the DNS

IPv4 vs 1Pvo

Do resolvers prefer IPv4 over IPv6?

Total Queries: 47,826,735
Queries over V6: 394,816

Number of Resolvers: 109,725
Number of Resolvers

using IPv6 for queries: 2,849

IPv4 vs 1Pvo

o

Do resolvers prefer IPv4 over IPVvF? |~ o
Total Queries: 47 77 K e
Queries oV~ wi©

¢ WS)

| ¢ ne <eSivers: 109,725

X S
N Yoer of Resolvers
using IPv6 for queries: 2,849

some Observations

There is a LOT of DNSSEC validation out there
— 87% of all queries have DNSSEC-OK set

— 30% of all DNSSEC-OK resolvers attempt to
validate the response

— 25% of end users are using DNS resolvers that will
validate what they are told

— 12% of end users don’t believe bad validation
news and turn to other non-validating resolvers
when validation fails.

some Observations

There is very little V6 being used out there

— 1% of queries use IPv6 as the transport protocol
when given a dual stack name server

It seems that when given a choice:
Browsers prefer IPv6

Resolvers prefer IPv4

some Observations

ECDSA is viable — sort of

— 1in 5 clients who use resolvers that validate RSA-
signed responses are unable to validate the same
response when signed using ECDSA

— But they fail to “unsigned” rather than “invalid” so
it’s a (sort of) safe fail

Can it work?

If we stick to RSA and keep response sizes at or
below 1,440 octets then there appears to be no
obvious user impact in terms of packet size

— Some resolvers may get stuck, but users appear to
use multiple resolvers

Questions?

Geoff Huston
George Michaelson

