
Network tuning for zone transfers in (lossy)
Long Fat Networks

14.05.2015 – RIPE70 Amsterdam

Marco Prause <prause@denic.de>

2 © DENIC eG

Agenda

1. Introduction

2. Path-MTU-Discovery and Maximum-Segment-Size

3. Having a short look at involved TCP Congestion Control algorithms

4. Changing the algorithm – changing the game ?

3 © DENIC eG

1. Introduction

● Regsitry for .de

● Domains : over 15 million

● Nameserver locations : 16

● Zonefile size : 1.5 GByte

● DNSSEC domains : 20.000

● Average IXFR size : 185 MByte

4 © DENIC eG

1. Introduction

 Why should we take a deeper look at the network ?

 Increasing zonefile and dnssec = growing incremental zonetransfer

 To locations far far away, we saw that the transfers last longer

 In some cases the transfers

 Didn't fit in our zone generation cycle

 Or their incremental transfers were cancled and often an AXFR was started

 Beside latency we also see packetloss on some paths, which is also decreasing our
throughput

5 © DENIC eG

1. Introduction

 Why should we take a deeper look at the network ?

6 © DENIC eG

2. Path-MTU-Discovery and Maximum-Segment-Size

 Good news

 PMTUD is working like a champ

 also MSS is adjusted by the interface MTU

 BUT

 Wireshark says : PMTUD is not influencing the MSS

 only the fixed MTU of the interface is taken to compute the MSS

7 © DENIC eG

2. Path-MTU-Discovery and Maximum-Segment-Size

 So we had two possibilities to fix that issue

 Fixed MTU of 1300 on the interfaces

 Will also be used for LAN traffic and therefor also decrease the MTU on the LAN

 Let our VPN-Concentrator change the MSS inside the flow

 Thanks to MSS clamping we could rewrite the MSS during the initial TCP handshake

 So both endpoints learn the correct Maximun Segment Size

 After enabling MSS clamping we saw a small improvement concerning fragmentation,
but not enough to handle traffic to our locations with high latency and additional packetloss

8 © DENIC eG

3. Having a short look at involved TCP Congestion Control algorithms

● There are a few TCP-Algorithm in the wild, e.g. :

● BIC

● CUBIC

● Veno

● Illinois

● Hybla

● ...

● we focused at the most promising three – TCP-CUBIC, TCP-Illinois and TCP-Hybla

9 © DENIC eG

3. Having a short look at involved TCP Congestion Control algorithms

● TCP-Cubic

„TCP Cubic attempts, like Highspeed TCP, to solve the problem of efficient TCP
transport when bandwidth×delay is large. TCP Cubic allows very fast window

expansion; however, it also makes attempts to slow the growth of cwnd sharply as
cwnd approaches the current network ceiling, and to treat other TCP connections fairly.“

(http://intronetworks.cs.luc.edu/current/html/newtcps.html)

10 © DENIC eG

3. Having a short look at involved TCP Congestion Control algorithms

● TCP-Illinois

„TCP-Illinois is a variant of TCP congestion control protocol, developed at the University
of Illinois at Urbana-Champaign. It is especially targeted at high-speed, long-

distance networks. ... achieves a higher average throughput than the standard TCP,
allocates the network resource fairly as the standard TCP, is compatible with the
standard TCP...“

(http://en.wikipedia.org/wiki/TCP-Illinois)

11 © DENIC eG

3. Having a short look at involved TCP Congestion Control algorithms

● TCP-Hybla

„TCP-Hybla was designed with the primary goal of counteracting the performance
unfairness of TCP connections with longer RTTs. TCP-Hybla is meant to overcome
performance issues encountered by TCP connections over terrestrial and satellite
radio links. These issues stem from packet loss due to errors in the transmission link
being mistaken for congestion, and a long RTT which limits the size of the congestion
window“

(http://www.satnac.org.za/proceedings/2012/papers/2.Core_Network_Technologies/15.pdf)

12 © DENIC eG

3. Having a short look at involved TCP Congestion Control algorithms

● The test setup for emulating the latency and packetloss...

 RTT ~ 300 ms

● Loss rate ~ 10 % averrage

● …was installed quite easy
● 2 x Linux CentOS 6

● 1 x FreeBSD 10
● Dummynet/IPFW for simulation of latency and packetloss

13 © DENIC eG

4. Changing the algorithm – changing the game ?

And the winner is : TCP-Hybla
● Although they are quite close together, tcp-hybla did the best job at the simulated lossy

LFN

● Latency : 300 ms

● Lossrate : 10 %

Algorithm Throughput
Cubic 10 KByte/s

Illinois 15-20 KByte/s

Hybla 60-80 KByte/s

14 © DENIC eG

4. Changing the algorithm – changing the game ?

● Easy to activate at our Linux servers (sender)

● # ls /lib/modules/`uname -r`/kernel/net/ipv4/

 # modprobe tcp_hybla

 # echo "hybla" > /proc/sys/net/ipv4/tcp_congestion_control

 On client's side (receiver)

 net.ipv4.tcp_sack = 1

 net.ipv4.tcp_timestamps = 1

 net.ipv4.tcp_window_scaling = 1

15 © DENIC eG

4. Changing the algorithm – changing the game ?

● And here we go...

● Zonentransfer-Rates in KByte/s (Location Seoul)

o

Transit
changed to

a better path

Location
deactivated

Looped in
optimized

Zone-Master

WTF? Rebuild
of servers w/

old config

And again w/
correct config

16 © DENIC eG

4. Changing the algorithm – changing the game ?

● Zonen transfer rates in Byte/s (Location Bejing)
without Hybla

with Hybla

17 © DENIC eG

4. Changing the algorithm – changing the game ?

● Zonentransfer-times & lossrate (location Hongkong)

18 © DENIC eG

FIN

Thanks !
Questions ?

Marco Prause <prause@denic.de>

	<Titel>
	Agenda
	Folie 3
	Folie 4
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	Folie 12
	Folie 13
	Folie 14
	Folie 15
	Folie 16
	Folie 17
	Folie 18

