

Harness Your Internet Activity

DNS-Based DDoS Evolving Threat

RIPE May 2015 Amsterdam

Ralf Weber
Bruce Van Nice

2014 Random Subdomain Attacks

MILLIONS OF UNIQUE NAMES

ATTACK TRAFFIC

NORMAL TRAFFIC

DATA REPRESENTS ABOUT 3% OF GLOBAL ISP DNS TRAFFIC

2015 – Quieter in Some Ways

Typical "Day in the Life" DNS Queries Seen at Resolvers

DDoS

Other

Typical Day in The Life DDoS Queries Seen at a Resolver

Amplification

Random Subdomain

Observations

- Use of open resolvers/proxies still predominates
 - Installed base around 17 M
 - Trend toward more stealthy attacks Send enough traffic to bring down authorities
 - Highly distributed attacks 1,000s of open resolvers per attack
 - Often low intensity per IP
 - Interesting recent example: www.appledaily.com

Observations

- Bot based attacks
 - Tend to be few IPs tens to hundreds
 - High to very high intensity per IP
 - Up to 1000s of QPS/IP
 - Long tail with lower QPS
 - Recent interesting example: rutgers.edu

Attacks Using Bots

What's Happening?

Network scans for vulnerable devices: Home gateways or other "Things"

Attempts login with default passwords

Many utilities at the attackers disposal Load and run malware

Other vectors possible: Bots with loaders, Rompager

The Problem

Considerable stress on DNS infrastructure:

Resolvers

Queries require recursion (computationally expensive)

Working around failed or slow authorities Stress concentrates as authorities fail

Authorities

Unexpected query spikes exceed provisioned limits

Goals for Remediation

- Minimize work for resolvers
- Eliminate bad traffic to authoritative servers
- Answer legitimate queries
- Answer legitimate queries for attacked domains
 - don't drop, don't SERVFAIL
- Two approaches being used:
 - Rate limit traffic to authorities
 - Ingress filtering

How do they behave in practice?

Testing Efficiency of Rate Limiting

Test Diagram

Redwood City, CA

good traffic 10kqps background 100qps for test domains

dnsperf

tcpreplay

attack traffic 2 * 5000 qps for two domains Resolver

resolutions

other

Regensberg, Germany

2 domains being attacked

Authoritative Servers

100qps 1qps

Rate limits should not be hit for normal traffic Resolver and authoritative servers record traffic

Run good traffic: User results

Run good traffic: Test domains results

Run good traffic: Authoritative Server Results

System Stats

Run attack traffic - Compare with normal

Run protected attack traffic: User results

Run good traffic: User results

Run protected attack traffic: Test domains results

Run good traffic: Test domains results

Run protected attack traffic: Authoritiative Server Results

Run good traffic: Authoritative Server Results

Results: Resolver Traffic 9,000,000 queries

	Test					
Resolver	run	Type	No Error	NXDomain	Lost	Servfail
<mark>Vantio </mark>	3	Good	8987622	12248	74	56
	5	Attack	8988291	11576	100	33
ingress filter	7	Attack	8978049	20668	1142	141
PDNS	3	Good	8989007	9477	94	1422
	5	Attack	8986967	8767	2868	1398
Bind	3	Good	8986205	11537	231	2027
	5	Attack	8985913	11571	371	2145
unprotect	7	Attack	7497150	19291	5436	1478123
Unbound	8	Good	8982254	17309	287	150
	9	Attack	8975942	17114	901	6043

Results: Attack domains

						Auth	Auth	
Software	Test Run	Туре	No Error	Lost	Servfail	Noerror	NXDomain	Auth Dropped
CS7	3	Good	89970	0	30	8997	0	0
	5	Attack	1450	0	88550	145	93684	80790
ingress filter	7	Attack	899950	0	50	8998	0	0
PDNS	3	Good	89929	0	71	8995	0	0
	5	Attack	807	1395	87798	99	16317	62131
Bind	3	Good	90000	0	0	9000	0	0
	5	Attack	560	2	89438	56	7683	6670
unprotect	7	Attack	3310	160	86530	332	94315	2538256
Unbound	8	Good	90000	0	0	16401	0	0
	9	Attack	4311	6	85584	910	48110	417843

Test Results Summary

	Ingress Filtering	Rate Limit Authorities
Eliminate bad traffic to authoritative servers	YES	SOME
Correctly answer legitimate queries (don't drop, don't SERVFAIL)	YES	YES
Correctly answer legitimate queries for attacked domains	YES	NO

Summary

- Constant DNS Based DDoS evolution
- Open Home Gateways remain a problem
- Malware-based exploits create broad exposure

- Not clear where attacks are headed
- Evidence attackers refining techniques
- Remediation needs to be undertaken with care